
Journal of Computational Physics 229 (2010) 3171–3188
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Parametric FEM for geometric biomembranes

Andrea Bonito a,1, Ricardo H. Nochetto b,c,2, M. Sebastian Pauletti a,*,3

a Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
b Department of Mathematics, University of Maryland, College Park, MD 20742, USA
c Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
a r t i c l e i n f o

Article history:
Received 7 December 2008
Received in revised form 1 December 2009
Accepted 30 December 2009
Available online 11 January 2010

Keywords:
Moving finite elements
Isoparametric elements
Geometric flow
Shape differential calculus
Gradient flow
Helfrich
Willmore
Bending energy
Biomembrane
Red blood cell
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2009.12.036

* Corresponding author. Tel.: +1 9798624477; fax
E-mail addresses: bonito@math.tamu.edu (A. Bon
URLs: http://www.math.tamu.edu/~bonito (A.

(M. Sebastian Pauletti).
1 Partially support by Swiss NSF Fellowship PBEL2
2 Partially support by NSF Grants DMS-0505454 an
3 Partially support by NSF Grant DMS-0505454.
a b s t r a c t

We consider geometric biomembranes governed by an L2-gradient flow for bending energy
subject to area and volume constraints (Helfrich model). We give a concise derivation of a
novel vector formulation, based on shape differential calculus, and corresponding discret-
ization via parametric FEM using quadratic isoparametric elements and a semi-implicit
Euler method. We document the performance of the new parametric FEM with a number
of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while
exhibiting large deformations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Lipids consist of a hydrophilic head group and one or more hydrophobic hydrocarbon tails. When lipid molecules are im-
mersed in aqueous environment at a proper concentration and temperature they spontaneously aggregate into a bilayer or
membrane that forms an encapsulating bag called vesicle. This phenomenon is of interest in biology and biophysics because
lipid membranes are ubiquitous in biological systems, and an understanding of vesicles provides an important element to
understand real cells. Canhan and Helfrich [1,2] were the first to introduce over 35 years ago, a model for the equilibrium
shape of vesicles consisting of minimization of the bending elasticity or curvature energy. The structure of lipid membranes
is that of a two dimensional, oriented, incompressible and viscous fluid. Phenomenological [1,2] and rigorous continuum
mechanical [3–5] approaches agree that the membrane C is endowed with a bending or elastic energy. The simplest form
of this energy is
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j
Z

C
h2 þ jG

Z
C

k;
where h and k are the mean and Gauss curvature, respectively; and j and jG are the constant bending coefficients. For closed
surfaces without topological changes, the Gauss–Bonnet theorem [6, Section 8.5] yields the equivalence (up to scaling) be-
tween the above energy and the ‘‘Willmore” energy [7] defined by
WðCÞ :¼ 1
2

Z
C

h2
: ð1Þ
If the temperature and osmotic pressure of the vesicle do not change, the enclosed volume and surface area can be as-
sumed to be conserved. The former is a consequence of the impermeability of the membrane. The latter is because the num-
ber of molecules remains fixed in each layer and the energetic cost of stretching or compressing the membrane is much
larger than the cost of bending deformations. Refer to [8–10] for more details.

In this work, we consider the Willmore energy model (1) with isoperimetric area and volume constraints. The combined
effect of the bending elasticity with the surface and volume constraints generates a great variety of non-spherical shapes, in
contrast to the characteristic spherical equilibrium shapes of simple liquids which are governed by isotropic surface tension.
Describing the membrane by quantities all defined on the surface (energy, area and volume), equilibrium shapes are ob-
tained as stationary states of a geometric evolution equation. For other aspects more related to the dynamics, the effect
of the surrounding fluid should be taken into account. We study this effect in [11] and compare it with the geometric model.

Formally, the geometric model is a gradient flow for a suitable shape functional JðCÞ: find the evolution of the surface
C ¼ CðtÞ such that its velocity v is given by
hv ;wi ¼ �dJðC; wÞ 8w; ð2Þ
where dJðC; wÞ is the shape derivative of JðCÞ in the direction of w and h�; �i is a scalar product determining the type of flow
[12].

The shape derivative of the Willmore energy (1) in three dimensions is given by
dWðC; wÞ ¼
Z

C
ð�DCh� 1

2
h3 þ 2khÞw; ð3Þ
where w ¼ m �w is the normal component of w. The L2-gradient flow (i.e. hv ;wi :¼
R
C v �w) obtained from (2) with J ¼W ,

namely using (3), is known as the Willmore flow and is a highly nonlinear 4th order geometric partial differential equation
(PDE) on CðtÞ. We refer to [13] for a general discussion of discrete gradient flows.

Parametric finite element methods (FEM) have already been proposed for the Willmore flow without constraints [14,15]
and with constraints [16]. A chief difficulty is to make sense of Gauss curvature k within a variational framework. The
scheme of Rusu [15] is the first of this class for (1) without constraints. That of Dziuk [14] copes with undesirable tangential
motions observed in Rusu’s scheme near equilibrium and presents a stability estimate for special initial conditions. In both
cases, the formulation involves vector quantities (position and curvature). In contrast, Garcke et al. [16] present a scalar
scheme for (1) with constraints and evolve the interface in the direction of an averaged normal. The latter is somewhat re-
lated to the method of Bänsch et al for surface diffusion [17]. All these schemes are implemented with piecewise linear ele-
ments and exhibit difficulties to start; they are due to geometric inconsistency, a new concept that we discuss briefly in
Section 4.4 and fully in [18]. Alternative techniques are also available in the literature, for instance the phase field approach
[19,20], threshold dynamics [21] and level set method [22]. An advantage of our parametric method over the alternatives is
the capability to easily increase the approximation order of the interface. In addition, quadratics are more robust than linears
regarding mesh quality; this adds to several other important features for fourth order problems discussed in Section 4.5. Fi-
nally note that the number of degrees of freedom associated with the parametric approach is that of a 2D problem, whereas
for the phase field or level set methods a full 3D problem is to be solved, perhaps with the help of adaptive meshes or narrow
band methods to improve efficiency. These advantages are at the expense of difficulties in executing topological changes,
especially in 3D.

In this paper, we give a rather concise derivation of a novel vector formulation for (1) with constraints that hinges on
shape differential calculus [23,12]. In fact, we derive the following vector form of the shape derivative (Theorem 3.1)
dWðC; /Þ ¼
Z

C
rC/ � rCh�

Z
C
ðrCxþrCxTÞrC/ : rChþ 1

2

Z
C

divChdivC/; ð4Þ
where x is the variable of integration or, with a slight abuse of notation, is also the identity over C. Since (4) is variational, it is
the basis of a new parametric FEM with C0-elements. We prefer quadratic isoparametric elements to linear elements, and
discuss the reasons in Section 4.5. We evolve the computational domain at each time step via a semi-implicit Euler method;
this is similar to [17,16,11,24,25,13,26,14] and is discussed in Section 4.1.

The contributions of this paper are as follows:

� We derive the novel variational formulation (4) and corresponding parametric FEM. The derivation, being based on con-
cepts from shape differential calculus, is rather concise.
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� We implement the scheme using quadratic isoparametric elements. Previous parametric FEM use piecewise linears
instead. We show the benefits of quadratics and explore further their use for curvature driven flows in [18].

� We do not need an explicit initial approximation to mean curvature to initialize the discrete Willmore flow (see (4)). This
is rather tricky for piecewise linear FEM, due to geometric inconsistency, and a serious drawback of previous parametric
approaches.

� We present a new and efficient algorithm to enforce the discrete isoperimetric volume and area constraints to machine
precision. This hinges on a suitable Newton iteration.

� We introduce three computational tools, namely time and space adaptivity and mesh smoothing, which are important
enhancements for large deformations and problems with disparate space-time scales. The use of mesh smoothing is indis-
pensable for piecewise linears but not much so for quadratics.

� We include several numerical three dimensional simulations which lead to equilibrium shapes such as dumbbells, red
cells, toroids, and exhibit large deformations. The evolutions as well as final shapes are rather stable.

The outline of the paper is as follows. In Section 2 we briefly introduced concepts from tensor algebra, tangential calculus
and shape differential calculus. In Section 3 we present the continuous model for the biomembrane and derive a new var-
iational formulation. We discretize this formulation in Section 4 after briefly introducing the finite element method for sur-
faces. In Section 5 we briefly discuss computational tools employed to enhance mesh quality and speed up computations.
Finally, in Section 6 we present several numerical simulations.

2. Shape and tangential differential calculus

Hereafter C denotes a compact, oriented, smooth d-hypersurface in Rdþ1 without boundary. The outer unit normal vector
field is well defined and denoted by m. Given a vector function w defined on C its normal component is denoted by w :¼ w � m.

Consider v a smooth vector field defined in V � Rdþ1, a domain containing C. Then the surface C ¼ Cð0Þ is deformed
through an autonomous system of ODEs prescribed by v. We denote the resulting sequence of perturbed surfaces by
fCðtÞgtP0. Under these considerations let J be a shape functional that assigns to each surface C a scalar value. Then the shape
derivative of J in the direction of the vector field v is defined as the limit dJðC; vÞ ¼ limt!0

1
t ðJðCðtÞÞ � JðCÞÞ. We are interested

in shape functionals of the formZ

JðCÞ ¼

C
wðx;CÞ;
where the function w depends not only on the position but also on the geometry of C; for instance wðx;CÞ ¼ 1
2 h2 in (1).

For smooth surfaces, the signed distance function b is well defined in a neighborhood V of C. This provides a canonical
extension to functions defined on C and is the basis of a simple differential calculus on C which uses the Euclidean differ-
ential calculus in the ambient neighborhood V of C [27,12,23].

Let f and v be C1 scalar and vector valued functions defined on C and F and V canonical extensions to V. Then, we can
define the tangential gradient of f as the orthogonal projection of rF to the tangent hyperplane of C
rCf :¼ ðI� m � mÞrFjC:
This definition is independent of the extension . The tangential divergence of v is defined by divCv :¼ trrCv while the surface
gradient of a vector and the surface divergence of a tensor are taken by columns. Finally for C2ðCÞ functions or vectors, the
surface Laplacian or Laplace Beltrami operator is defined by DC� :¼ divCðrC�Þ.

The second fundamental form is rCm. This symmetric tensor has the eigenvector m with zero eigenvalue. The remaining
eigenvalues are the principal curvatures j1; . . . ;jd. We denote by h :¼ j1 þ � � � þ jd the total mean curvature, by
k :¼ j1; . . . ;jd the Gauss curvature, and by h :¼ hm the vector total mean curvature. Using the previous differential operator
definitions the following geometric identities follow [23, Chapter 8]:
rCx ¼ ðI� m � mÞ; �DCx ¼ hm;

divCm ¼ h; DCm ¼ �jrCmj2m þrCh;
ð5Þ
where x is the identity function. Also observe that
divCv ¼ trðrCvÞ ¼ I : rCv ¼ rCx : rCv:
We can extend some useful classical product rules (see [28, p. 30]) to tangential vector calculus: if f, v and S are C1ðCÞ scalar,
vector and tensor valued fields, then
rCðf vÞ ¼ frCvþrCf � v; ð6Þ
divCðf vÞ ¼ f divCvþ v � rCf ; ð7Þ
divCðSvÞ ¼ S : rCvþ v � divCS; ð8Þ
divCðf SÞ ¼ f divCSþ STrCf ; ð9Þ
rCðv � wÞ ¼ rCvwþrCwv: ð10Þ
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Tangential Stokes and Green formulas can be obtained (see [23, Chapter 8]). If f and v are C1ðCÞ scalar and vector field, then
Z
C

f divCvþ
Z

C
rCf � v ¼

Z
C

f v � h: ð11Þ
3. Geometric model for biomembranes

The equilibrium shapes of biomembranes are stationary points of an L2-gradient flow of an augmented bending energy J
that accounts for the area and volume constraints. Let AðCÞ :¼

R
C 1 be the area of C ¼ CðtÞ and VðCÞ :¼ 1

dþ1

R
C x � m be its en-

closed volume, where x denotes the identity function on the domain of integration. Therefore, if k; p are the area and volume
Lagrange multipliers, the augmented functional J reads
JðC; k;pÞ :¼ 1
2

Z
C

h2 þ k
Z

C
1�

Z
C0

1
� �

þ p
dþ 1

Z
C

x � m �
Z

C0
x � m

� �
;

where C0 is a given initial surface. For more details on imposing constraints using Lagrange multipliers see [29]. We now
state the Helfrich problem, or equivalently the geometric flow for biomembrane modeling. Let GT be the trajectory space
GT :¼ fðx; tÞ : x 2 CðtÞ; t 2 ½0; T�g;
and x : GT ! Rdþ1 be the unique function defined by the property that xðx; tÞ ¼ x for all x 2 CðtÞ; t 2 ½0; T�. We call x the tra-
jectory of the evolution.

Problem 3.1. (Weak Helfrich flow) Given an initial surface C0 and a final time T > 0, find the trajectory x : GT ! Rdþ1, the
area multiplier k : ½0; T� ! R and the volume multiplier p : ½0; T� ! R such that Cð0Þ ¼ C0 and for all t 2 ð0; TÞ
Z
CðtÞ

_x � / ¼ �dJðCðtÞ; /Þ :¼ �dWðCðtÞ; /Þ � k dAðCðtÞ; /Þ � p dVðCðtÞ; /Þ ð12Þ
for all smooth / : CðtÞ ! Rdþ1 and supplemented by the conservation relations
AðCðtÞÞ ¼ AðCð0ÞÞ; VðCðtÞÞ ¼ VðCð0ÞÞ: ð13Þ
The shape derivatives of the area, volume and bending energy functionals are given by (see [12])
dAðC; /Þ ¼
Z

C
h/ dVðC; /Þ ¼

Z
C

/; ð14Þ

dWðC;/Þ ¼
Z

C
rC/ � rCh�

Z
C

hjrCmj2/þ 1
2

Z
C

h3/: ð15Þ
Integrating (15) by parts, and using that jrCmj2 ¼ �h2 þ 2k in three dimensions [12], the Euler–Lagrange equation for J is gi-
ven by
�DCh� 1
2

h3 þ 2khþ khþ p ¼ 0:
The familiar equations for W without constraints follows from k ¼ p ¼ 0 [7].
Since neither the normal m nor the second fundamental form rCm are well defined on a globally C0 piecewise polynomial

surface, we now eliminate m as an explicit quantity in (15). This is achieved as in [14,15], by allowing general variations of the
manifold C, not necessarily in the normal direction, and using the total mean curvature h ¼ hm as a variable instead of h.
However, our derivation being based on shape differential calculus is rather concise. First note that (14) give rise to the fol-
lowing vector form of the area and volume shape derivatives:
dAðC; /Þ ¼
Z

C
h � /; dVðC; /Þ ¼

Z
C

m � /: ð16Þ
The following Theorem establishes an equivalent formulation of the shape derivative (15) of Willmore energy, which does
not explicitly involve the normal m.

Theorem 3.1 (Vector form of dW). For all smooth vector functions /, we have
dWðC; /Þ ¼
Z

C
rC/ : rCh�

Z
C
rC/ðrCxþrCxTÞ : rChþ 1

2

Z
C

divChdivC/:
SincerCx ¼ rCxT ¼ I� m � m for as long as x stands for the identity over C, whether C is discrete or not, the symmetrization
above is immaterial. However, writing the middle term implicitly would break the symmetry and could potentially be useful
to reduce tangential motions. The proof of Theorem 3.1 requires the two following lemmas. The first one deals with the termR
CrC/ � rCh in (15).
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Lemma 3.2. For all smooth vector functions /, we have the identity
Z
C
rC/ � rCh ¼

Z
C
rC/ : rCh�

Z
C
rC/ðrCxþrCxTÞ : rCh�

Z
C

hDCm � /: ð17Þ
Proof. We first observe that rCmh ¼ rCmTh ¼ 0 because rCm is symmetric and h is normal. In view of (10), we obtain
rCh ¼ rCðh � mÞ ¼ rChm. Then
rC/ � rCh ¼ rCðh � mÞ � rCð/ � mÞ ¼ rChm � rC/m þrChm � rCm/ ¼ rC/ðm � mÞ : rChþrCh � rCm/;
where we have used again (10). We next employ (11) to integrate by parts the last term of the previous formula
Z
C
rCh � rCm/ ¼ �

Z
C

hdivCðrCm/Þ ¼ �
Z

C
hrCm : rC/�

Z
C

hDCm � /:
In light of (6), we can write rCh ¼ rCðhmÞ ¼ hrCm þrCh� m, whence
Z
C
rCh � rCm/ ¼ �

Z
C
rC/ : rChþ

Z
C
ðrCh� mÞ : rC/�

Z
C

hDCm � /:
Since we have shown that rCh ¼ rChm, using tensor product identities we get
ðrCh� mÞ : rC/ ¼ ðrChm � mÞ : rC/ ¼ rC/ðm � mÞ : rCh:
Inserting this expression into the previous one, and using 2ðI� m � mÞ ¼ ðrCxþrCxTÞ as given by (5), leads to the asserted
equality (17). The second lemma provides an alternative expression for

R
C hDCm � / in (17). h

Lemma 3.3. For all smooth vector functions /, we have the identity
�
Z

C
hDCm � / ¼

Z
C

hjrCmj2/� 1
2

Z
C
rCh2 � /; ð18Þ
where / ¼ m � / is the normal component of /.

Proof. From (5) it follows that / ¼ /m þrCx/ and
hDCm � / ¼ �hjrCmj2/þ hrCh � rCx/:
As rCx is symmetric, and is the identity for tangent vectors, we see that
hrCh � rCx/ ¼ 1
2
rCh2 � rCx/ ¼ 1

2
rCxrCh2 � / ¼ 1

2
rCh2 � /;
and the asserted expression (18) follows. h

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Inserting (17) and (18) into (15) yields
dWðC; /Þ ¼
Z

C
rC/ : rCh�

Z
C
rC/ðrCxþrCxTÞ : rChþ 1

2

Z
C

h2
h � /�

Z
C
rCh2 � /

� �
:

In view of (11) we have
R

C h2
h � / ¼

R
C divCðh2

/Þ. Moreover, invoking (7) we deduce
divCðh2
/Þ ¼ h2divC/þrCh2 � /;

divCh ¼ divCðhmÞ ¼ rCh � m þ hdivCm ¼ h2
;

because divCm ¼ h. Consequently
Z
C

h2
h � / ¼

Z
C

divChdivC/þ
Z

C
rCh2 � /;
which implies the assertion.
4. Discrete geometric schemes for biomembranes

We now present a discrete version of the Helfrich flow (12). We start with a semi-implicit Euler method for time stepping.
We continue with the notion of isoparametric finite elements on surfaces. Together they yield the fully discrete scheme. We
conclude with the algorithm for computing Lagrange multipliers.
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4.1. Time discretization

Consider the time partition t0 ¼ 0 < � � � < tMþ1 ¼ T of ½0; T�, with time step sn :¼ tnþ1 � tn, for n ¼ 0; . . . ;M. For advancing
the surface from Cn to Cnþ1, we resort to the same semi-implicit Euler method as in [30,17,16,31,24,25,13,26,14,15]:
xð�; tnþ1Þ � Xnþ1 :¼ xþ snV
nþ1; ð19Þ
where x is the identity over Cn and Vnþ1 is an approximation of the velocity vð:; tnþ1Þ. Note that both, Xnþ1 and Vnþ1 are
approximation at time tnþ1 but are defined over Cn. The vector field Xnþ1 is an implicit description of the new surface
Cnþ1 according to the following time discretization of (12)
1
sn

Z
Cn
ðXnþ1 � xÞ �U ¼ �dJnþ1ðCn; UÞ 8U; ð20Þ
and
Cnþ1 :¼ fXnþ1ðxÞ 8x 2 Cng: ð21Þ
The time-discrete shape derivative dJnþ1ðCnÞ in (20) reads very much like expressions (16) for area and volume energies and
Theorem 3.1 for Willmore energy, except that the geometry ðC; m; xÞ is explicit at time tn and the system is linear in the im-
plicit unknowns ðXnþ1;Hnþ1Þ. This is an effective geometric linearization of the highly nonlinear flow (12). Eq. (21) means that
the surface Cnþ1 is obtained as the image of Xnþ1, thereby preserving the connectivity of Cn. Consequently, topological
changes are not admissible in this formulation. Eq. (20) can be equivalently written in terms of Vnþ1 :¼ 1

sn
ðXnþ1 � xÞ instead

of Xnþ1. We prefer this choice because it helps make the exposition more coherent as this is the natural variable for mem-
brane–fluid interaction [11]. So we will describe all our discrete schemes using Vnþ1 instead of Xnþ1.

In this vein, we now formulate a semidiscrete equation for curvature Hnþ1. The point of departure is the key geometric
identity �DCx ¼ h written in (5). Combining this with (19) we get the following geometric PDE on Cn:
Hnþ1 þ snDCn Vnþ1 ¼ �DCn x: ð22Þ
Eq. (20) requires both Vnþ1 and Hnþ1. It is then natural to keep them separately, which entails an operator splitting of the
underlying fourth order problem into two second order linear PDE on Cn.

4.2. Space discretization

We recall the notion of finite elements on surfaces.

Definition 4.1 (Polyhedral surface). A pair ðCh; T hÞ is a polyhedral surface if Ch � Rdþ1 and T h is a finite family of closed, non
degenerate, d-simplices in Rdþ1 such that:

� The intersection of two simplices in the family is either empty or a ðd� kÞ-dimensional sub-simplex of both simplices with
k ¼ 1; . . . ; d, and

� Ch ¼
S

K2T h
K .

Let bK � Rd be the master element, i.e. the convex hull spanned by the canonical basis feigd
i¼1. Given a d-simplex K in Rdþ1

let FK : bK ! K be a injective affine map such that the vertices of bK are mapped to the vertices of K.

Definition 4.2 (Piecewise polynomial surface). Given a polyhedral surface ðCh; T hÞ and a positive integer m, let F : Ch ! Rdþ1

be a C0 map that leaves the vertices of Ch unchanged and such that FjK is a polynomial of degree 6 m for each K 2 T h. Then
the subordinate piecewise polynomial surface eCh of degree m is defined by eCh ¼ FðChÞ.

A C0-finite element space on eCh can then be defined as follows:
ShðeChÞ ¼ fU 2 C0ðeChÞ : U 	 eFK 2 PmðbK Þ 8 K 2 T hg;
where PmðbK Þ is the set of polynomial of degree 6 m in d variables and eFK ¼ F 	 FK . We do not consider C1-elements. We
restrict both the surface and finite element space to have the same polynomial degree m for ; we discuss polynomial
mismatch in [18].

4.3. The fully discrete scheme

We now couple the time discretization (20) and (22) with a space discretization using polynomial degree m ¼ 2. We seek
velocity and curvature Vnþ1;Hnþ1 2 Snþ1

h , and multipliers pnþ1; knþ1 2 R, satisfying
Z
Cn

h

Vnþ1 �U ¼ �dWnþ1
h ðCn

h; UÞ � knþ1dAn
hðC

n
h; UÞ � pnþ1dVn

hðC
n
h; UÞ ð23Þ
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for all U 2 Snþ1
h as well as
Fig. 1.
through
Z
Cn

h

Hnþ1 �W� sn

Z
Cn

h

rCn
h
Vnþ1 : rCn

h
W ¼

Z
Cn

h

rCn
h
x : rCn

h
W; ð24Þ
for all W 2 S
nþ1
h . The parametric scheme (24) is due to Dziuk for the mean curvature flow [26]. It has been used more recently

for other flows [30,17,16,11,18,31,24,25,13,14,32,33,15]. On the other hand, dWnþ1
h ðCn

h; UÞ approximates dWðC; UÞ in
Theorem 3.1 and reads
dWnþ1
h ðCn

h; UÞ ¼
Z

Cn
h

rCn
h
Hnþ1 : rCn

h
U�

Z
Cn

h

ðrCn
h
xþrCn

h
xTÞrCn

h
U : rCn

h
Hnþ1 þ 1

2

Z
Cn

h

divCn
h
Hnþ1 divCn

h
U; ð25Þ
whereas dAn
hðC

n
h; UÞ and dVn

hðC
n
h; UÞ approximate (16)
dAn
hðC

n
h; UÞ ¼

Z
Cn

h

Hn �U; dVn
hðC

n
h; UÞ ¼

Z
Cn

h

U � m: ð26Þ
Finally, we enforce the area and volume constraints
AðCnþ1
h Þ ¼ AðCn

hÞ; VðCnþ1
h Þ ¼ VðCn

hÞ:
We explain the actual computation of multipliers knþ1; pnþ1 in Section 4.6.
4.4. Geometric consistency

The chief geometric identity h ¼ �DCx needs to be relaxed at the discrete level. According to [18] we say that a discrete
triple ðC;X;HÞ is geometrically consistent if it satisfies the weak relation:
X;H 2 Sh :

Z
C

H �U ¼
Z

C
rCX : rCU 8U 2 Sh ð27Þ
However, if X ¼ x is the identity over C, then (27) may yield oscillations in both direction and magnitude for H and polyno-
mial degree m ¼ 1. Lack of convergence has already been reported in the literature [14,16], whereas convergence of H with
order m � 1 has been proved [32,34]. We note that (19) decouples Xnþ1 and x, the identity over Cn

h, and thereby makes (24)
geometrically consistent.

The situation is even more dramatic when mesh modification is involved, because we have no access to the exact geom-
etry, and leads to a new paradigm: where to place the nodes to keep geometric consistency and accuracy. To illustrate this issue,
consider the example of Fig. 1 with m ¼ 1 (linear finite elements) in 2D. Both the exact unit circle C and its piecewise linear
approximation Ch are given (left). Bisection of every edge of Ch yields a piecewise linear vector pair (X,H) satisfying (27) with
H much bigger in magnitude to 1 at the old vertices and with wrong orientation at the midpoints. This strange behavior is
however consistent with the curvature of a smooth curve going through the nodes (right), but quite distinct from the unit
circle (left). Therefore, the issue at stake is that placing the new nodes over Ch, namely overrelying on the approximate curve,
has undesirable geometric effects.

Similar geometric artifacts occur when doing mesh coarsening and smoothing, which together with mesh refinement are
important ingredients to maintain a balanced computational effort and mesh quality for any polynomial degree m P 1. A
remedy is briefly explored in Section 5 and in full detail in [18].
4.5. Linears vs. quadratics

The simulations in Section 6 are obtained using quadratics ðm ¼ 2Þ. We now list their advantages against linears.
Placing the new nodes created by bisection on the curve is equivalent to replacing the circle being approximated (left) by a smooth curve passing
all the nodes (right). This yields geometric artifacts.
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� Initialization. To start our scheme (24), (23) we need a discrete representation of C0
h but not of H0. This appears to be an

advantage of our method with respect to those in [16,31,14,15] for Willmore energy. However, we also need H0 to deal
with dA0

hðC
0
h; UÞ on (26). We have noticed that a geometrically inconsistent initial triple ðC0;X0;H0Þ may prevent ours,

as well as the other methods, to start for m ¼ 1. Dziuk proposes in [14] an intricate computation for the initial triple to
be geometrically consistent. The issue disappears with quadratics m ¼ 2. They can also be used to create a geometrically
consistent triple for m ¼ 1. In fact, we let X0 be the identity over C0

h, compute H0 explicitly from (27), and finally interpo-
late at the linear nodes; the resulting triple is geometrically consistent and the method is practical. We have used this idea
for initialization in Figs. 2 and 3.

� Time-steps. The only time-step restriction of our approach, as well as those in [16,31,14,15], is to avoid node crossing while
advancing the surface from Cn

h to Cnþ1
h . However, taking small time-steps may represent an almost explicit, and so geo-

metrically inconsistent, computation of curvature Hnþ1 from (24). This undesirable effect has been observed for m ¼ 1
and is responsible for initialization difficulties and numerical oscillations associated with mesh modification. The issue
does not occur with m ¼ 2.

� Tangential motions. Undesirable tangential motions, particularly close to equilibrium, have been reported [14–16]. Our
method does exhibit such motions for m ¼ 1 as documented in Figs. 2 and 3. They may lead to severe mesh distortions
and compromise simulations. The use of mesh smoothing resolves the problem as can be seem by comparing left and mid-
dle columns of Fig. 2. More importantly, m ¼ 2 bypasses the problem altogether without mesh smoothing (right column of
Fig. 2).

� Mesh quality. For the ellipsoid evolutions of Fig. 2, quadratics maintain the mesh quality at a value roughly of 0.4 (right
column) whereas linears with smoothing keep it at about 0.5 (mid column); see Fig. 3. These values are excellent. This
situation is rather typical in our simulations in Section 6, which run with m ¼ 2 without mesh smoothing except for
the large deformation of the twisted banana (see Figs. 12 and 13). On the other hand, linears without smoothing blow
up in finite time (Fig. 2 left column).
4.6. Constraints

We present a method to compute the discrete Lagrange multipliers of (23). This is an instance of the more general method
described in [35] to enforce discrete isoperimetric constraints to machine precision.

Since both dAn
hðC

n
h; UÞ and dVn

hðC
n
h; UÞ in (26) are explicit, then (23) and (24) can be rewritten as
Fig. 2. An initial ellipsoid of aspect ratio 4 
 1 
 1 is subject to a Helfrich flow. The mesh evolution under scheme (23) is shown using piecewise linears
(left), piecewise linears with smoothing (center), and piecewise quadratics (right). The snapshots are taken at times t ¼ 0; 0:4;1:4. All three meshes have the
same number of degrees of freedoms and the quadratic mesh has 4 times fewer elements. Using piecewise linears produces a blow up of the computed
bending energy in finite time due to mesh distortion. This does not occur if mild mesh smoothing is used or if quadratic elements (without smoothing) are
used. See Fig. 3 for a more quantitative behavior.
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Fig. 3. Energy (left scale) and mesh quality (right scale) as a function of time for the simulations described inFig. 2. For linear elements blow up occurs att�

1:4 and correlates with mesh distortion. Quadratics conserve the mesh quality without smoothing.
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EðVnþ1;Hnþ1Þ :¼ Fw þ knþ1Fa þ pnþ1Fv ; ð28Þ
where Fw;Fa, and Fv are the forcing functions in system (23), (24) corresponding to energies W, A and V; note that E is linear
in its two arguments. The idea of the method is to solve (28) by solving a similar system for three different right hand sides,
and adjust the multipliers to verify the area and volume constraints
AðCnþ1
h Þ ¼ AðCn

hÞ; VðCnþ1
h Þ ¼ VðCn

hÞ: ð29Þ
More precisely, let ðVnþ1
s ;Hnþ1

s Þ be the solution of
EðVnþ1
s ;Hnþ1

s Þ ¼ Fs;
for s ¼ w; a;v . Invoking the linearity of system (28) we have
Vnþ1 ¼ Vnþ1
w þ knþ1Vnþ1

a þ pnþ1Vnþ1
v ;
where knþ1 and pnþ1 are determined so that (29) is satisfied. Given Vnþ1
w ;Vnþ1

a and Vnþ1
v , the pair ðknþ1; pnþ1Þ is a root of

f : R2 ! R2 defined by
f ðk; pÞ :¼
AðChðk;pÞÞ � AðCn

hÞ
VðChðk;pÞÞ � VðCn

hÞ

" #
; ð30Þ
where Chðk; pÞ :¼ Cn
h þ sðVnþ1

w þ kVnþ1
a þ pVnþ1

v Þ. A Newton method can now be used to find the roots knþ1 and pnþ1 of f: for
i ¼ 1;2; . . .
Chðknþ1
i�1 ;p

nþ1
i�1 Þ :¼ Cn

h þ s Vnþ1
w þ knþ1

i�1 Vnþ1
a þ pnþ1

i�1 Vnþ1
v

� �
;

ðknþ1
i ; pnþ1

i Þ :¼ ðknþ1
i�1 ;p

nþ1
i�1 Þ � ðDf ðknþ1

i�1 ;p
nþ1
i�1 ÞÞ

�1f ðknþ1
i�1 ; p

nþ1
i�1 Þ;
where the derivatives of f can be obtained via shape differential calculus.

Lemma 4.1 (Jacobian of f). For s sufficiently small, the differential of fg1028 in (30) is given by
Df ðk;pÞ ¼ s

R
Ch

divCh
Va

R
Ch

divCh
VvR

Ch
m � Va

R
Ch

m � Vv

" #
;

where Ch ¼ Chðk; pÞ.

Proof. We define an extension eVs of Vs for s ¼ w; a;v in a tubular neighborhood V of Cn
h as follows:
eVsðxÞ ¼ VsðysÞ; where ys 2 Cn

h satisfies ys þ sVsðysÞ ¼ x 2 V:
Note that this extension is independent of k and p and is well defined provided that s is sufficiently small. Since
AðChðk;pÞÞ ¼
Z

Chðk;pÞ
1; VðChðk;pÞÞ ¼

Z
Xhðk;pÞ

1;
invoking the shape derivatives (14), we deduce
Linears (quality)
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@kAðChðk; pÞÞ ¼ s
Z

Chðk;pÞ
H � eVa ¼ s

Z
Chðk;pÞ

divC
eVa
and
@kVðChðk;pÞÞ ¼ s
Z

Chðk;pÞ
eVv � m:
This concludes the proof. h

Remark 4.1 (Initial guess). To derive a good initial guess, we recall that
AðCÞ ¼ 1
d

Z
C

divCx; VðCÞ ¼ 1
dþ 1

Z
C

x � m;
and manipulate these formulas to approximate AðChðk; pÞÞ and VðChðk; pÞÞ. To do so, we replace the domain of integration
Chðk; pÞ by Cn

h and the identity on Chðk; pÞ by xþ sVnþ1 to infer that
AðChðk;pÞÞ �
s
d

Z
Cn

h

divCn
h
Vw þ k

Z
Cn

h

divCn
h
Va þ p

Z
Cn

h

divCn
h
Vv

 !
þ AðCn

hÞ

VðChðk;pÞÞ �
s

dþ 1

Z
Cn

h

m � Vw þ k
Z

Cn
h

m � Va þ p
Z

Cn
h

m � Vv

 !
þ VðCn

hÞ:
In view of (29) we impose that the terms in parenthesis vanish. If as ¼
R

Cn
h

divCn
h
Vs and bs ¼

R
Cn

h
m � Vs with s ¼ w; a;v , then we

can solve the following system for k and p to get a good initial guess:
aa av

ba bv

� �
k

p

� �
¼
�aw

�bw

� �
:

Remark 4.2 (Implementation). If a direct solver is used to solve the system, then it is only necessary to do the factorization
once and use it to solve all the systems. This implies that the computational cost of using this method to impose the con-
straints is basically the same as not having the constraints. On the other hand, if an iterative solver is used then the system
has to be solved three times, but each system is independent from the others so a parallel implementation is very
straightforward.

Remark 4.3 (Comparison with penalization). The previous method exhibits a couple of advantages over penalization: penal-
ization is sensitive to the penalization parameter and the solution oscillates when reaching equilibrium. These drawbacks do
not happen with the previous method.
5. Computational tools

A drawback of the parametric FEM is the deterioration of mesh quality caused by tangential motion of nodes. Another
issue is the disparate space-time scales typical of fourth order problems. In this section, we briefly describe numerical tools
to circumvent these issues and speed up computations. Full details are given in [35]. As an illustration Fig. 4 shows a view of
the final mesh obtained for the flow of Fig. 5 with and without space adaptivity.
The initial ellipsoid of Fig. 5 below was subject to a discrete Helfrich’s flow. Starting with the same initial mesh two simulations were run, one with
daptivity (left) and the other one without (right). The pictures show the spherical caps of the final equilibrium meshes (cf. 4th frame of Fig. 5). Space
ity allows for the of a smaller number of degrees of freedoms and a consequent decrease on the computational time without any appreciable
ce in the geometric quantities of interest.
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Fig. 5. Evolution of an initial axisymmetric ellipsoid of aspect ratio 8 
 1 
 1. For each frame the picture on the right is a 3D view of the surface mesh
whereas that on the left is a 2D cut through a symmetry plane. The evolution is characterized by the formation of spherical caps connected by a strongly
cylindrical and long neck (dumbbell shape). The two bottom graphs show the evolution of the corresponding bending and kinetic energies (left) and the
area and volume Lagrange multipliers (right). Notice that the bending energy approaches the equilibrium as the kinetic energy approaches 0. The bending
energy for this aspect ratio is reduced approximately 22%.
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5.1. Time adaptivity

Time-step control for nonlinear time dependent fourth order problems is indispensable for two reasons:

� Disparate time-scales. It is typical that fast scales coexist with slow scales. We illustrate this with Example 6.3 for a twisted
banana. At the beginning the time scale is fast relative to the interval of evolution, whereas it turns out to be relatively
slow towards the end. Time-step control helps avoid negligible evolution.

� Node crossing. This is the only geometric constraint for the time-step but it is crucial for the integrity of the mesh and suc-
cess of the entire simulation.
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We employ the following algorithm, fully described in [35]. If qK is the diameter of the largest inscribed ball in K 2 T , and
z is a generic node of T , then we let dðzÞ be the nodal function that takes the minimum of qK over all K 2 T that share z. The
quantity # dðzÞ

jVðzÞj gives the largest time-step to move node z without entangling the mesh, provided # 6 1=2. Practice indicates

that # ¼ 1=3 is a good choice for linear meshes whereas # ¼ 1=6 is the safe choice for quadratic meshes controlled by the
hybrid method of [35].
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Fig. 6. Evolution of an initial axisymmetric ellipsoid of aspect ratio 4 
 1 
 1. For each frame the picture on the right is a 3D view of the surface mesh and
that on the left is a 2D cut through a symmetry plane. This evolution displays the formation of spherical caps connected by a relatively short neck, but still
gives rise to a dumbbell shape (compare with Fig. 5). The two bottom graphs show the evolution of the corresponding bending and kinetic energies (left)
and the area and volume Lagrange multipliers (right). The bending energy for this aspect ratio is reduced approximately 14%.
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Fig. 7. Evolution of an initial axisymmetric ellipsoid of aspect ratio 2 
 1 
 1. For each frame the picture on the left is a 3D view of the surface mesh and that
on the right is a 2D cut through a symmetry plane. This evolution does not exhibit the formation of separate spherical caps but rather a pill shaped
configuration. (compare with Figs. 5 and 6). The two bottom graphs show the evolution of the corresponding bending and kinetic energies (left) and the area
and volume Lagrange multipliers (right). The bending energy for this aspect ratio is reduced approximately 2%.
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5.2. Space adaptivity and geometric consistency

The idea is to equidistribute the pointwise error, as proposed in [17] and studied in [34]; see also [36–38]. This maintains
a balance between accuracy and number of degrees of freedom, and makes simulations affordable. This is achieved via atom-
ic refinement and coarsening operations based on the domain pointwise error (see [35]). We use the maximum strategy, and
refer to [39,40] for details.

To avoid geometric artifacts due to geometric inconsistency, as explained in Section 4.4, we first interpolate H in the new
mesh and next solve (27) for X. This procedure is stable, efficient, and keeps the existing geometric accuracy for any poly-
nomial degree m P 1. We refer to [18] for a full discussion including proofs of these assertions.
Fig. 8. Evolution of a non-axisymmetric ellipsoid of aspect ratio 2 
 3 
 5. For each frame the picture on the bottom is a 3D view of the surface mesh and
the pictures on the top from left to right are three cuts through the coordinate planes. The evolution seems to produce an axisymmetric equilibrium.
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Fig. 9. Evolution of an initial axisymmetric ellipsoid of aspect ratio 3 
 1 
 1. For each frame the picture on the bottom is a 3D view of the surface mesh and
that on the top is a 2D cut through a symmetry plane. This evolution is characterized by the formation of a depression in the center together with a rounding
and thickening of the outer circular edge (red blood cell). The two bottom graphs show the evolution of the corresponding bending and kinetic energies
(left) and the area and volume Lagrange multipliers (right). The bending energy for this aspect ratio is reduced approximately 24%.
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5.3. Mesh improvement

If a parametric FEM is used to discretize a geometric evolution, then it creates a discrete flow of the mesh. The mesh qual-
ity tends to deteriorate as the mesh gets transported. This effect is most pronounced for large domain deformations, and may
lead to blow up in finite time. Figs. 2 and 3 depict such a situation for linear FEM. It is thus significant to include mesh quality
control as part of the design of a robust method. We implement a mesh optimization routine which operates on stars and
selectively reallocates the centered node so as to:

� Improve the star quality;
� Preserve the shape of the approximate surface;
� Maintain the local mesh size;
� Produce negligible changes of the finite element functions defined on the mesh.
Fig. 10. Evolution of an initial axisymmetric ellipsoid of aspect ratio 5 
 5 
 1. For each frame the picture on the bottom is a 3D view of the surface mesh
and that on the top is a 2D cut through symmetry plane. The equilibrium is characterized by the formation of an extreme depression of the center to the
point of almost pinching (red blood cell). During the evolution the thickening of the outer circular edge occurs faster than the motion on the center,
producing a depressed circular ring in between the outer edge and the center (second frame). This in turn is responsible for the appearance of a center bump
instead of a depression. Later the evolution continues to squeeze this bump to a depression at the expense of more thickening and rounding of the outer
circular edge.

Fig. 11. Initial configuration of the twisted banana. We see from left to right the front, back and top views of the initial twisted banana shape. To help
visualize the shape it is rendered next to a thin right cylinder with its axis in the z direction.
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Our method, described in [35], consists of a hybrid affine-quadratic approach for isoparametric surfaces, which extends
mesh smoothing techniques from linears to quadratics. More precisely, after mesh smoothing has been performed on the
underlying simplicial mesh (the skeleton), we relocate the position of the quadratic midnodes but restrict it to lie not too
far from the corresponding simplicial midnode. Mesh modification yields geometric inconsistencies, especially for linear ele-
ments, which can be cured with the algorithm in [18].
6. Numerical results

In this section, we present numerical simulations for the geometric biomembrane model of Problem 3.1 using the fully
discrete scheme (24), (23) for quadratics polynomials m ¼ 2. We do not employ the computational tools of Section 5 except
for the twisted banana, which exhibits very large domain deformations. These tools are indispensable for linears m ¼ 1. The
algorithm was coded in C using the adaptive finite element library ALBERTA [41,40]. The description of each simulation is
included in the caption of the corresponding figure. In all simulations the volume and surface area are preserved to machine
precision.
Fig. 12. Evolution of the twisted banana shape of Fig. 11. The frames show a 3D view of the surface mesh. The simulation was run in the time interval [0,5].
The final equilibrium was reached at t � 0:6. Two different time scales associated to distinct geometric motions were observed. In Figs. 13 and 14 we
describe the two time scales leading to the second and forth frames, respectively.

Fig. 13. Time zooming to the interval [0,0.02] for the evolution of the twisted banana described in Fig. 12. For each frame the picture on the left is a 3D view
of the whole surface and that on the right is a 3D mesh view of the lower end suitably zoomed. This is the fast time scale of the simulation and is
characterized by the formation of spherical caps and disappearance of the twist.

Fig. 14. Time zooming to the interval [0.04,1.3] for the evolution of the twisted banana described in Fig. 12. For each frame the picture on the left is a 3D
view of the surface and that on the right is a 2D cut through a symmetry plane together with the velocity field depicted with arrows. Observe that the
arrows disappeared in the last frame, when equilibrium is reached. This is the slow time scale of the evolution, and is characterized by the straightening of
the boomerang-like shape of the fast time scale evolution (Fig. 13).
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Axisymmetric equilibrium shapes have been obtained in [42,43] by reducing the problem to a system of ODEs. Our sim-
ulations preserve the axisymmetry during the evolution without imposing it. We refer to [16,31,14] for 3 dimensional sim-
ulations with piecewise linears with and without axial symmetry.

6.1. Dumbbell bars

For axisymmetric initial ellipsoids it follows that 2 of its 3 axes are equal. Also as the bending energy is invariant under
dilations what actually matters for the flow is the aspect ratio of the ellipsoid axes. When the third axis of the initial con-
figuration is greater than about twice the length of the other axes, the evolution gives rise to dumbbell shapes. We present
three simulations for the aspects ratios of 8 
 1 
 1 (Fig. 5), 4 
 1 
 1 (Fig. 6) and 2 
 1 
 1 (Fig. 7). The last one is not lit-
erally in the family but makes the transition phase to the ‘‘pill” shaped family through the sphere to the next family of Sec-
tion 6.2.

We also include a non axisymmetric initial ellipsoid (Fig. 8). The simulation reveals that at equilibrium it ends being
axisymmetric.

6.2. Red blood cells

This family of shapes, also called discocytes, occurs when the third axis on the initial axisymmetric ellipsoid is less than
about half the length of the other axes. We present two simulations for aspects ratios 3 
 3 
 1 (Fig. 9) and 5 
 5 
 1
(Fig. 10). Pinching is observed when the third axis is at least five times smaller than the others. For higher aspects ratios
the upper and lower sides actually cross. This self-intersection is allowed by the parametric FEM, which is local in nature,
but the evolution is meaningless for biomembrane modeling. The aspect ratio 5 
 5 
 1 yields an equilibrium shape which
barely touches the other side (see Fig. 10).

6.3. Twisted banana

The twisted banana is interesting for bending flows because it is not axisymmetric and also has two different bendings in
it (the banana bending plus the twist). The time-step adaptivity was crucial for this simulation as we detected two very dif-
ferent time scales along the evolution: the initial time-step is 10�6 whereas the total running time is t ¼ 5. Moreover, the
mesh smoothing algorithm is turn on to cope with very large deformations, First we introduce the shape (Fig. 11) and next
show the full simulation (Fig. 12) and the two time scales (Figs. 13–15).

6.4. Toroids

Fig. 16 shows a nonsymmetric donut shape configuration. The stationary state is not the Clifford torus, as conjectured by
Willmore, because the evolution is subject to area and volume constraints.

6.5. Conclusions

From the simulations presented in this chapter the following conclusions can be drawn:
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Fig. 15. Kinetic and bending energy plot for the twisted banana simulation. Each graph is correspond to the time interval of the fast and slow scale of the
simulation. For the full time scale of the simulation the energy drops appear quite abrupt. The spherical caps are completely formed in the interval [0,0.01]
and the evolution falsely seems to reach a steady state. The bending the energy decreases about 21% in this time interval t ¼ 0:01. After this the bending
energy decreases only a tiny 0.3% in a relatively long time interval t � 1:0.



� Spherical caps. For a geometric flow when the initial shape has distinctive ends (as in Simulations 6.1 and 6.3), the forma-
tion of spherical-shaped ends connected by a cylindrical neck seems to be the most effective way to minimize the energy.
In fact, the formation of spherical-shaped ends decreases the energy several orders of magnitude more than straightening
of a bended shape (see Simulation 6.3).

� Red cells. For a geometric flow when the initial shape is disc like (as Simulation 6.2) the evolution to decrease the energy is
characterized by the thickening of the outer circular edge with the formation of a depression in the center.

� Exponential decay of kinetic energy. The geometric flow shows a clear exponential decay of the kinetic energy
when approaching the equilibrium shape. The rate of decay seems to depend in a non trivial way on the equilibrium
shape.
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